Nebulae and Star Formation

Orion Nebula

Nebulae: a cloud of dust and gas that we see in light

  1. Emission Nebulae or Bright Nebulae: a glowing gas (hydrogen); e.g. Great Nebula in Orion, heated by the Trapezium
  2. Absorption Nebulae or Dark Nebulae: dark dust clouds; e.g. Horsehead Nebula
  3. Reflecting Nebulae: reflecting dust cloud; e.g. Pleiades in Taurus
  4. Planetary Nebulae: excited by central star; e.g. Dumbbell Nebula
  5. Cirrus

STAR FORMATION

Trapezium

Stars form in Giant Molecular Clouds about 100,000 to 1 million solar masses. A few thousand in the Milky Way Galaxy, Giant Molecular Clouds break into denser bits, contract, and eventually form stars. The Orion Molecular Cloud has about 500 stars. The Trapezium and the Orion Nebula have solar masses of matter with young stars.

  1. Non-stellar galactic objects reside in HII regions with molecular clouds of pre-main sequence stars and dense clumps of dust.
  2. Protostars and newborn stars about 1/2 to 1 solar mass reside in Molecular Clouds.
Advertisements

Interstellar Medium – The Material Between Stars

WHAT LIES BETWEEN STARS IN GALAXIES?

– Interstellar Medium

Interstellar Medium

Interstellar Medium is gas and dust between stars, nebulae, and giant molecular clouds (basic building blocks of galaxies in star formation). The four types of matter in interstellar medium are: interstellar dust, interstellar atoms, interstellar molecules, and interstellar snowballs.

Interstellar Dust

  • Interstellar Reddening: dust that scatters blue light and causes stars to look redder
  • Extinction of Obscuration: high dust content that diminishes the brightness of stars, by as much as 25 magnitudes
  • Can be smaller than smoke particles
  • Consists of graphite, silicates, or ices
  • In core of heavy elements (e.g. iron, magnesium), mantle of organic compounds (oxygen, carbon, nitrogen), and outer mantle of ice

RADIO ASTRONOMY

  • Radio waves = longest wavelength of electromagnetic waves
  • Brightest optical objects not necessarily the brightest radio objects
  • e.g. Taurus A (Crab Nebula) and Sagittarius A (center of the Milky Way Galaxy)
  • Radio Spectral Line: the frequency or wavelength at which radio noise is slightly more or less intense
    • Hydrogen: 21 centimeter line
    • Radio spectra lines of molecules
      • OH (hydroxide): 1963
      • H20 (water): 1968
      • NH3 (ammonia): 1968
    • Over 50 molecules in interstellar space
    • Gives information on temperature, density, and motion
    • Molecular absorption line in UV

Interstellar Molecules

  • Molecules: two or more atoms bound together (e.g. H2O, CO, CH4, OH, H2, NH3)
  • Give absorption or emission bands
  • Observable in very cold, low density interstellar environments

Interstellar Snowballs

  • Between the sizes of  grains and comets
  • Composed of water, carbon, silicates, and other molecules

Interstellar Regions

  1. HI region: 200 K
  2. HII region: 10,000 K
  3. Molecular clouds: 50% gas in our galaxy
  4. Hot interstellar medium: 1 million K, super-heated gas from expanding supernova blasts (up to 90% of total volume)
  • HI Region
    • High density of neutral hydrogen atoms about a million atoms per cubic centimeter (e.g. Orion Nebula)
    • ~ 200 K
  • HII Region
    • Hydrogen with electron removed; e.g. ionized hydrogen gas (in emission nebulae)
      • Average density of hydrogen elsewhere is 1 atom per cubic centimeter
    • ~ 10,000 K

The Solar System: Basics

The Solar System

COMPARATIVE PLANETOLOGY

  • Eccentricity of Orbit: measures the ellipticity of orbit (ranges 0-1, with 0 as spherical and 1 as very elliptical)
  • Density: mass per unit volume; mass in grams and volume in cubic centimeters
  • Oblateness: measures how much the middle section of the planet bulges
  • Surface Gravity: the larger the surface gravity, the thicker the atmosphere as gravity pulls in more gases
  • Albedo: measures the fraction of light reflected compared to the amount of light received from the Sun; the higher the albedo, the more reflective the surface
  • Escape Velocity: minimum speed or velocity needed to escape the planet’s gravitational pull
  • Rotation: most planets rotate in counter-clockwise direction (prograde); others rotate in the clockwise direction (retrograde)
    • Rotational period is shortest for gaseous planets and longest for Venus
  • Roche Limit: about two and a half times the radius of the planet; within the Roche Limit, matter cannot accretes to form moons because the tidal force of the planet tears matter apart to form rings

Giant Planets: Giant planets have lighter elements such as hydrogen and helium in their atmospheres. They have stronger gravity and are at larger distances from the Sun. Jupiter, Saturn, and Neptune are stormy with great spots of lasting storms and belts and zones. However, Uranus is comparatively bland and uniform. All giant planets are home to convection, or hot gases rising and cold gases falling.

Terrestrial Planets: Terrestrial planets have heavier elements such as carbon, oxygen, and nitrogen. Mercury is most heavily cratered while Earth is least cratered. Larger terrestrial planets have plate tectonics. Earth has a sizable magnetic fields that can protect it from solar wind particles and Van Allen Belts. Earth has the “Goldilocks phenomenon,” or the right conditions for the development of life.

For more information: THE SUN, THE PLANETS, PLANETESIMALS