Fun Facts Cluster 2: From Space Rocks to Drones (AskAstro)

1. SPACE ROCK SUICIDE: Scientists can detect a comet or asteroid colliding into the Sun’s surface. The self-destructing comet or asteroid will explode due to pressure of traveling into the Sun’s photosphere. The brightness and impact of the collision depends on the mass of the object. A collision as such is high unlikely, however, because: 1) most comets and asteroids would to dust and vapor in the sizzling atmosphere of the Sun 2) objects will lose most of its mass as they approach the Sun 3) objects normally orbit the Sun, so the objects’ orbit must be altered or the object may be from another planetary system.

2. STELLAR DONATIONS: In a binary star system, if stars are close enough, tides can become so strong that the more gravitationally strong star call pull gas from the surface of its companion. Though the “tidal transfer” depends on the mass of the donor star, if two stars have equal mass, the accretor (the star gaining mass) will steal mass if the donor star’s radius exceeds 38 percent of the binary separation (distance between the stars) no matter the separation.

3. COLOR CODE: The dark and light horizontal bands depend on the organization of winds in Jupiter’s atmosphere. The light bands have a eastward jet on the side closest to the pole, and vice versa in the dark bands. The zones (light bands) appear bright because of colorless high-altitude clouds that contain ammonia ice. The belts (dark bands) have much thinner high altitude clouds and darker particles.

4. DANGEROUS FLYBY: NASA calculates the planetary flybys with nothing but Newton’s laws of motion. The desired closest approach depends on the mission and how much added velocity boost the mission requires. ┬áThe mass and closeness of the planet determines the bending of trajectory the probe must undergo. The approach distance can range from a few hundred to several thousand kilometers.

From: Astronomy magazine December 2012 Vol 41 Issue 12