The Milky Way – Structure and Origin

The Milky Way and Its Magellanic Clouds

The Milky Way and Its Magellanic Clouds

In the Southern Hemisphere, the Magellanic Clouds, or the galaxy’s satellite galaxies (revolves around Milky Way), are visible. The Magellanic Clouds are named for the Portuguese explorer Ferdinand Magellan, the first circumnavigator of the world. Because of interstellar dust (rocky planets and other material), we can only see 6,000 stars, but the Milky Way has 100 billion stars total. The farthest are 4,000 light years away. Earth’s atmosphere smears the sky, so stars appear to twinkle. About 10^6 stars— old as the universe— inhabit In globular clusters (~200 in Milky Way’s halo).

All pictures of the Milky Way are artists’ conceptions because no telescope can travel high enough (billions of light years) to capture the entire galaxy.

Milky Way – Structure

Shapley’s Subdivision of the Milky Way

  1. Nuclear Bulge: (10^6 solar masses) nucleus in the center, old stars (red)
  2. The Disk: (10^11 solar masses) thin, diffuse layer of material revolving around the bulge; the Sun is half-way on the disk; all young stars
  3. The Halo: hot gas about 100,000 K
  4. Galactic Corona: mass exists but unseen; 5-10 times as much mass as the nucleus, disk, and halo together, 95% of galaxy mass unknown matter
  • Visible Matter: 96% stars, 4% interstellar gas

Origin

  1. (13.6 billion years ago) A gas cloud of 75% hydrogen and 25% helium with mass ~ 1 trillion solar masses
  2. Contraction and rotation form spherical shape
  3. Inner part flattens to form disk of younger stars
  4. Galactic rotation forms spiral arms
  5. Supernovae gives off more heavy elements that eventually become the Sun
Advertisements

Interstellar Medium – The Material Between Stars

WHAT LIES BETWEEN STARS IN GALAXIES?

– Interstellar Medium

Interstellar Medium

Interstellar Medium is gas and dust between stars, nebulae, and giant molecular clouds (basic building blocks of galaxies in star formation). The four types of matter in interstellar medium are: interstellar dust, interstellar atoms, interstellar molecules, and interstellar snowballs.

Interstellar Dust

  • Interstellar Reddening: dust that scatters blue light and causes stars to look redder
  • Extinction of Obscuration: high dust content that diminishes the brightness of stars, by as much as 25 magnitudes
  • Can be smaller than smoke particles
  • Consists of graphite, silicates, or ices
  • In core of heavy elements (e.g. iron, magnesium), mantle of organic compounds (oxygen, carbon, nitrogen), and outer mantle of ice

RADIO ASTRONOMY

  • Radio waves = longest wavelength of electromagnetic waves
  • Brightest optical objects not necessarily the brightest radio objects
  • e.g. Taurus A (Crab Nebula) and Sagittarius A (center of the Milky Way Galaxy)
  • Radio Spectral Line: the frequency or wavelength at which radio noise is slightly more or less intense
    • Hydrogen: 21 centimeter line
    • Radio spectra lines of molecules
      • OH (hydroxide): 1963
      • H20 (water): 1968
      • NH3 (ammonia): 1968
    • Over 50 molecules in interstellar space
    • Gives information on temperature, density, and motion
    • Molecular absorption line in UV

Interstellar Molecules

  • Molecules: two or more atoms bound together (e.g. H2O, CO, CH4, OH, H2, NH3)
  • Give absorption or emission bands
  • Observable in very cold, low density interstellar environments

Interstellar Snowballs

  • Between the sizes of  grains and comets
  • Composed of water, carbon, silicates, and other molecules

Interstellar Regions

  1. HI region: 200 K
  2. HII region: 10,000 K
  3. Molecular clouds: 50% gas in our galaxy
  4. Hot interstellar medium: 1 million K, super-heated gas from expanding supernova blasts (up to 90% of total volume)
  • HI Region
    • High density of neutral hydrogen atoms about a million atoms per cubic centimeter (e.g. Orion Nebula)
    • ~ 200 K
  • HII Region
    • Hydrogen with electron removed; e.g. ionized hydrogen gas (in emission nebulae)
      • Average density of hydrogen elsewhere is 1 atom per cubic centimeter
    • ~ 10,000 K