Curiosity: Update 7 – Fingerprinting Martian Materials

X-Ray View of Martian Soil

The latest of Curiosity’s analyses show that the Martian minerals is similar to “weathered basaltic salts of volcanic origin in Hawaii.”  Curiosity’s CheMin (Chemistry and Mineralogy) instrument refines and identifies minerals in X-ray diffraction analysis on Mars. X-ray diffraction records hows minerals’ internal structures’ crystals react with X-rays. Identifying minerals in rocks and soil is crucial in assessing past environmental conditions. Each mineral has evidence of its unique formation. These minerals have similar chemical compositions but different structures and properties. The samples taken at “Rocknest” were consistent with scientists’ initial ideas of the deposits in Gale Crater. Ancient rocks suggest flowing water, while minerals in younger soil suggest limited interaction with water.

References

“NASA Rover’s First Soil Studies Help Fingerprint Martian Minerals First X-ray View of Martian Soil” JPL Caltech. JPL, 30 Oct 2012. Web. 5 Nov 2012.

Advertisements

Curiosity: Update 6 – Jake Matijevic, the Martian Rock

Analyzing “Jake Matijevic”

Curiosity first discovered “Jake Matijevic,” the pyramid rock on Mars, on September 19, 2012, but on October 11, 2012, NASA released a report on the chemical composition of this unusual rock. The rock’s composition was more varied than expected and even resembled some rocks in Earth’s interior. The pyramid rock resembles the common igneous rock found in many volcanic areas on Earth. On Earth, these igneous rocks typically form in the mantle from the crystallization (solidification) of liquid magma at elevated pressure. The first rock analyzed by the rover’s arm-mounted Alpha Particle X-Ray Spectrometer (APXS) and the thirtieth by the rover’s Chemistry and Camera instrument (ChemCam) on September 22, 2012, “Jake” has unique compositions at all 14 points targeted by Curiosity. Analyzing “Jake” marked the first time results of ChemCam were compared with APXS. In addition to the two instruments, Curiosity carries analytical laboratories to provide a more in-depth view of rocks’ and powders’ compositions.

Curiosity’s first scoop of sample from “Rocknest” was perfect. The first scoop is designed to clean Curiosity, essentially like a Martian car wash. Curiosity will spend three weeks at” Rocknest” and then drive 100 yards east to select a rock as its first target for its drill.

References

Greicius , Tony, ed. “Mars Rock Touched by NASA Curiosity has Surprises.” NASA. NASA, 11 Oct 2012. Web. 18 Oct 2012.

Curiosity: Update 5 – First Scoop, “Rocknest”

Rocknest on Mars

One hundred yards before its destination, Glenelg, Mars Rover Curiosity scoops samples of rock and soil above and below Mars’ surface for two weeks of instrument cleaning and calibrating. Curiosity must “rinse and spit” to rid its instruments of Earth residue. In a nest littered with rocks, appropriately named “Rocknest,” the rover will scoop four times the ordinary Mars material in preparation for samples at Glenelg. According to NASA, “The end of the rover’s 220-pound arm will shake ‘at a nice tooth-rattling vibration level’ for eight hours, like a Martian martini mixer gone mad. That heavy shaking will vibrate the fine dust grains through the rover chemical testing system to cleanse it of unwanted residual Earth grease.” Before Curiosity can scoop material, it must analyze the grain-size distribution and tread the surface with its wheel to expose new material. It will be two weeks before the rover scoops its first analytical sample, or sample number three (the first two are for cleansing) and even more time to analyze the sample composition. The CheMin instrument will identify minerals and the SAM instrument will identify chemical ingredients in sample three and four.

References

Larlham, Chuck. “NASA’s Mars Rover Curiosity—Welcome To “Rocknest” Where Real Science Begins.” Technology.gather.com. Gather.com, 7 Oct 2012. Web. 8 Oct 2012.

Hubbard, Amy. “Curiosity to scoop up Martian soil: First, it must rinse and spit.” LA Times. LA Times, 5 Oct 2012. Web. 8 Oct 2012.